L1_2.2 Binärsystem - Information

Ein Binärsystem oder auch Dualsystem bezeichnet ein Zahlensystem, das als Basis die Zahl 2 verwendet. Das Binärsystem verwendet zwei Ziffern:

0 und 1.

Potenzen zur Basis 2

	-				
		2 ⁴	2 x 2 x 2 x 2	16	
Hochzahl -1		2 ³	(2 x 2 x 2 x 2) : 2 =	8	:2
II. d. d. d.			2 x 2 x 2		: 2
Hochzahl -1		2 ²	(2 x 2 x 2) : 2 =	4	
Hochzahl -1			2 x 2		: 2
TIOCHZAIII -1	\	2 ¹	(2 x 2) : 2	2	
Hochzahl -1			= 2		: 2
	>	2 ⁰	2 : 2 =	1	
Hochzahl -1		2 ⁻¹	1 : 2 =	0.5	: 2
		Ζ'	1 : 2 =	0,5	
Hochzahl -1		2-2	(1 / 2) : 2	0,25	: 2
		~	= 1 / 4	0,20	
			177		

Umrechnung einer Binärzahl in eine Dezimalzahl

Beispiel 1

Umrechnung der Zahl 1011₂ (zur Basis 2) in eine Dezimalzahl:

2 ³	2 ²	2 ¹	2 ⁰
1	0	1	1

$$1011_2 = 1 \times 2^3 + 0 \times 2^2 + 1 \times 2^1 + 1 \times 2^0 = 8 + 0 + 2 + 1 = 11_{10}$$

Beispiel 2

Umrechnung der Zahl 101,112 (zur Basis 2) in eine Dezimalzahl:

2 ²	21	20	2-1	2 -2
1	0	1	1	1

$$101,11_2 = 1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0 + 1 \times 2^{-1} + 1 \times 2^{-2} = 4 + 0 + 1 + 0.5 + 0.25 = 5.75_{10}$$

Umrechnung einer Dezimalzahl in eine Binärzahl

Beispiel 1

Umrechnung der Zahl 71₁₀ (zur Basis 10) in eine Binärzahl mittels Dividieren mit Rest.

Wir teilen die Zahl durch 2, notieren das Ergebnis mit Rest. Danach teilen wir das erste Ergebnis ohne Rest durch 2 und notieren das 2. Ergebnis mit Rest. Das machen wir so lange bis das letzte Ergebnis 0 Rest 1 ergibt.

71 : 2 =	35	Rest 1	
35 : 2 =	17	Rest 1	
17 : 2 =	8	Rest 1	
8 : 2 =	4	Rest 0	
4 : 2 =	2	Rest 0	
2 : 2 =	1	Rest 0	
1 : 2 =	0	Rest 1	

Die Binärzahl ergibt sich aus den Resten von unten nach oben gelesen.

Also
$$71_{10} = 1000111_2$$

Beispiel 2

Umrechnung der Zahl 34,625₁₀ (zur Basis 10) in eine Binärzahl:

Es werden die Ziffern links und rechts vom Komma getrennt betrachtet. Die Ziffern links vom Komma werden wie oben berechnet. Die Ziffern rechts vom Komma werden notiert und mit 2 multipliziert. Ist das Ergebnis größer 1 wird die Zahl um 1 verringert und das Ergebnis notiert und wieder mit 2 multipliziert. Diesen Vorgang wird solange wiederholt bis das Ergebnis 0 wird.

Zahl links vom Komma				
34 : 2 =	17	Rest 0		
17 : 2 =	8	Rest 1		
8 : 2 =	4	Rest 0		
4 : 2 =	2	Rest 0		
2 : 2 =	1	Rest 0		
1 : 2 =	0	Rest 1		

Zahl rechts			
0,625 x 2 =	1,25	- 1	
0,25 x 2 =	0,5	- 0	
0,5 x 2 =	1	- 1	
0 x 2 =	0	Ende	

Die Binärzahl nach dem Komma ergibt sich aus den abgezogenen Zahlen von oben nach unten gelesen.

Es ergibt sich folgende Binärzahl **34,625**₁₀ = **100010**,**101**₂